Escherichia coli HypA is a zinc metalloprotein with a weak affinity for nickel.

نویسندگان

  • Anelia Atanassova
  • Deborah B Zamble
چکیده

The hyp operon encodes accessory proteins that are required for the maturation of the [NiFe] hydrogenase enzymes and, in some organisms, for the production of urease enzymes as well. HypA or a homologous protein is required for nickel insertion into the hydrogenase precursor proteins. In this study, recombinant HypA from Escherichia coli was purified and characterized in vitro. Metal analysis was used to demonstrate that HypA simultaneously binds stoichiometric Zn(2+) and stoichiometric Ni(2+). Competition experiments with a metallochromic indicator reveal that HypA binds zinc with nanomolar affinity. Spectroscopic analysis of cobalt-containing HypA provides evidence for a tetrathiolate coordination sphere, suggesting that the zinc site has a structural role. In addition, HypA can exist as several oligomeric complexes and the zinc content modulates the quaternary structure of the protein. Fluorescence titration experiments demonstrate that HypA binds nickel with micromolar affinity and that the presence of zinc does not dramatically affect the nickel-binding activity. Finally, complex formation between HypA and HypB, another accessory protein required for nickel insertion, was observed. These experiments suggest that HypA is an architectural component of the hydrogenase metallocenter assembly pathway and that it may also have a direct role in the delivery of nickel to the hydrogenase large subunit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HybF, a zinc-containing protein involved in NiFe hydrogenase maturation.

HypA and HypB are maturation proteins required for incorporation of nickel into the hydrogenase large subunit. To examine the functions of these proteins in nickel insertion, the hybF gene, which is a homolog of hypA essential for maturation of hydrogenases 1 and 2 from Escherichia coli, was overexpressed, and the product was purified. This protein behaves like a monomer in gel filtration and c...

متن کامل

Interaction between Hydrogenase Maturation Factors HypA and HypB Is Required for [NiFe]-Hydrogenase Maturation

The active site of [NiFe]-hydrogenase contains nickel and iron coordinated by cysteine residues, cyanide and carbon monoxide. Metal chaperone proteins HypA and HypB are required for the nickel insertion step of [NiFe]-hydrogenase maturation. How HypA and HypB work together to deliver nickel to the catalytic core remains elusive. Here we demonstrated that HypA and HypB from Archaeoglobus fulgidu...

متن کامل

Network of hydrogenase maturation in Escherichia coli: role of accessory proteins HypA and HybF.

We have studied the roles of the auxiliary protein HypA and of its homolog HybF in hydrogenase maturation. A mutation in hypA leads to the nearly complete blockade of maturation solely of hydrogenase 3 whereas a lesion in hybF drastically but not totally reduces maturation and activity of isoenzymes 1 and 2. The residual level of matured enzymes in the hybF mutant was shown to be due to the fun...

متن کامل

Structure-function analyses of metal-binding sites of HypA reveal residues important for hydrogenase maturation in Helicobacter pylori

The nickel-containing enzymes of Helicobacter pylori, urease and hydrogenase, are essential for efficient colonization in the human stomach. The insertion of nickel into urease and hydrogenase is mediated by the accessory protein HypA. HypA contains an N-terminal nickel-binding site and a dynamic structural zinc-binding site. The coordination of nickel and zinc within HypA is known to be critic...

متن کامل

Dependence of Helicobacter pylori urease activity on the nickel-sequestering ability of the UreE accessory protein.

The Helicobacter pylori ureE gene product was previously shown to be required for urease expression, but its characteristics and role have not been determined. The UreE protein has now been overexpressed in Escherichia coli, purified, and characterized, and three altered versions were expressed to address a nickel-sequestering role of UreE. Purified UreE formed a dimer in solution and was capab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 187 14  شماره 

صفحات  -

تاریخ انتشار 2005